Global Stability Analysis of a Delayed SEIQR Epidemic Model with Quarantine and Latent

نویسندگان

  • Tiantian Li
  • Yakui Xue
چکیده

In this paper, we study a kind of the delayed SEIQR infectious disease model with the quarantine and latent, and get the threshold value which determines the global dynamics and the outcome of the disease. The model has a disease-free equilibrium which is unstable when the basic reproduction number is greater than unity. At the same time, it has a unique endemic equilibrium when the basic reproduction number is greater than unity. According to the mathematical dynamics analysis, we show that disease-free equilibrium and endemic equilibrium are locally asymptotically stable by using Hurwitz criterion and they are globally asymptotically stable by using suitable Lyapunov functions for any .  Besides, the SEIQR model with nonlinear incidence rate is studied, and the 0  that the basic reproduction number is a unity can be found out. Finally, numerical simulations are performed to illustrate and verify the conclusions that will be useful for us to control the spread of infectious diseases. Meanwhile, the 1, k 3 k will effect changing trends of , S , E , I , Q R in system (1), which is obvious in simulations. Here, we take 3 k as an example to explain that.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of a Delayed Epidemic Model with Beddington-DeAngelis ‎Incidence Rate and a Constant Infectious Period

In this paper, an SIR epidemic model with an infectious period and a non-linear Beddington-DeAngelis type incidence rate function is considered. The dynamics of this model depend on the reproduction number R0. Accurately, if R0 < 1, we show the global asymptotic stability of the disease-free equilibrium by analyzing the corresponding characteristic equation and using compa...

متن کامل

Fuzzy Sliding Mode Controller Design and Analysis of an SQEIAR Epidemic Model for COVID-19 to Determine the Quarantine Rate

According to the global prevalence of coronavirus (COVID-19) pandemic, mathematical models can predict and control the dynamic behavior of the pandemic. Therefore, in this study, a comprehensive model is considered to examine the trend of COVID-19 based on Susceptible, Exposed, Infected (Symptomatic and Asymptomatic), and Recovered individuals. In the absence of a curative treatment or vaccinat...

متن کامل

Stability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function

       In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...

متن کامل

Permanence and global asymptotic stability of a delayed predator-prey model with Hassell-Varley type functional response

Here, a predator-prey model with Hassell-Varley type functional responses is studied. Some sufficient conditions are obtained for the permanence and global asymptotic stability of the system by using comparison theorem and constructing a suitable Lyapunov functional. Moreover, an example is illustrated to verify the results by simulation.

متن کامل

AIDS Epidemic Modeling With Different Demographic Structures

The most urgent public health problem today is to devise effective strategies to minimize the destruction caused by the AIDS epidemic. Mathematical models based on the underlying transmission mechanisms of the AIDS virus can help the medical/scientific community understand and anticipate its spread in different populations and evaluate the potential effectiveness of different approaches for bri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013